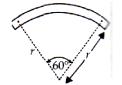
DPP - 1 TOPIC - MAGNETIC PROPERTIES & EARTH'S MAGNETISM

CLASS - XIITH


DPP-1

- A magnetic needle lying parallel to a magnetic field requires W units of work to turn it through Q.160°. The torque needed to maintain the needle in this position will be
 - (A) $\sqrt{3}W$

(B) W

(C) $\left(\frac{\sqrt{3}}{2}\right)W$

- (D) 2W
- **Q.2** A bar magnet of length 'l' and magnetic dipole moment 'M' is bent in the form of an arc as shown in figure. The new magnetic dipole moment will be

(A) $\frac{2}{\pi}M$

(B) $\frac{M}{2}$

(C) M

- (D) $\frac{3}{\pi}M$
- The magnet of pole strength m and magnetic moment M is cut into two pieces along its axis. Its Q.3 pole strength and magnetic moment now become
 - (A) $\frac{m}{2}, \frac{M}{2}$

(B) m, $\frac{M}{2}$

(C) $\frac{m}{2}$, M

- (D) m. M
- The time period of a freely suspended bar magnet in a magnetic field id 2sec. it is cut into two Q.4 equal parts along its axis, then the time period is
 - (A) 4sec

(B) 0.5 sec

(C) 2 sec

- (D) 0.25 sec
- At certain place, the horizontal component of earth's magnetic field is 3.0 G and the angle dip at **Q.5** that place is 30°. The magnetic field of earth at that location
 - (A) 4.5G

(B) 5.1G

(C) 3.5 G

- (D) 6.0G
- 0.6 The horizontal and vertical components of earth's magnetic field at a place are 0.3 G and 0.52 G. The earth's magnetic field and the angle of dip are
 - (A) 0.3 G and $\delta = 30^{\circ}$

(B) $0.4 \text{ G} \text{ and } \delta = 40^{\circ}$

(C) $0.5 \text{ G} \text{ and } \delta = 50^{\circ}$

- (D) $0.6 \text{ G} \text{ and } \delta = 60^{\circ}$
- $\mathbf{Q.7}$ The angle of dip at a place where horizontal and vertical components of earth's magnetic field are equal is
 - (A) 45°

 $(B) 30^{\circ}$

(C) 0°

- (D) 60°
- $(E) 90^{\circ}$
- In a certain place, the vertical component of earth's magnetic field is 0.5 oersted and dip is 60° . Q.8 The earth's magnetic field at that place is (oersted in C.G.S. unit of magnetic field intensity (H)

$$1O_e = \frac{1000}{4\pi} \frac{A}{m}$$

- (A) 1 oersted
- (B) $\frac{\sqrt{3}}{2}$ oersted (C) 2 oersted (D) $\frac{1}{\sqrt{3}}$ oersted

- Q.9 Assertion: The magnetic poles of earth do not coincide with the geographic poles.

 Reason: The discrepancy between the orientation of a compass and true north-south direction is known as magnetic declination.
 - (A)Both assertion and reason are true and reason is the correct explanation of the assertion.
 - (B) Both assertion and reason are true but reason is not the correct explanation of the assertion.
 - (C) Assertion is true, reason is false.
 - (D) Both assertion and reason are false.
- **Q.10** If the horizontal component of the earth's magnetic field is 0.30 G, and the dip angle is 60⁰ at a given place, then the value of earth's total magnetic field is
 - (A) 0.15G

(B) $0.15\sqrt{3}G$

(C) $0.15\sqrt{2}G$

- (D) 0.60G
- Q.11 An iron rod is placed parallel to magnetic field of intensity 2000 A/m. The magnetic flux through the rod is $6 \times 10^{-4} Wb$ and its cross-sectional area is 3 cm². The magnetic permeability of the rod in Wb/A m is
 - (A) 10^{-1}

(B) 10^{-2}

(C) 10^{-3}

- $(D) 10^{-4}$
- Q.12 A magnetizing field of 1600 A m⁻¹ produces a magnetic flux of $2.4 \times 10^{-5} Wb$ in an iron bar of cross-sectional area 0.2 cm². The susceptibility of an iron bar is
 - (A) 298

(B) 596

(C) 1192

- (D) 1788
- **Q.13** χ_1 and χ_2 are susceptibility of a paramagnetic material at temperatures T_1 K and T_2 K respectively, then
 - (A) $\chi_1 = \chi_2$

(B) $\chi_1 T_1 = \chi_2 T_2$

(C) $\chi_1 T_2 = \chi_2 T_1$

- (D) $\chi_1 \sqrt{T_1} = \chi_2 \sqrt{T_2}$
- Q.14 The temperature of transition from ferromagnetic property to paramagnetic property is called
 - (A) Transition temperature

(B) Critical temperature

(C) Curie temperature

- (D) Triplet temperature.
- **Q.15** The magnetic susceptibility of a paramagnetic material at -73° C is 0.0075 and its value at -173° C will be
 - (A) 0.0030

(B) 0.0075

(C) 0.0045

- (D) 0.015
- Q.16 The magnetic induction and the intensity of magnetic field inside an iron core of an electromagnetic are 1 Wb m⁻² and 150 A m⁻¹ respectively. The relative permeability of iron is $(\mu_0 = 4\pi \times 10^{-7} henry m^{-1})$
 - (A) $\frac{10^6}{4\pi}$
- (B) $\frac{10^5}{6\pi}$
- (C) $\frac{10^3}{4\pi}$
- (D) $\frac{10^3}{6\pi}$
- Q.17 Materials suitable for permanent magnets, must have which of the following properties?
 - (A) High retentively, low coercivity and high permeability
 - (B) Low retentively, low coercivity and high permeability
 - (C) Low retentively, high coercivity and high permeability
 - (D) High retentively, high coercivity and high permeability

ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	D	A	C	C	D	A	D	A	D	С	В	В	С	D	В	D